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Modeling of an RO water desalination unit using neural networks
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Abstract

In this paper, a feedforward neural network (NN) model is developed to predict the performance of a reverse osmosis (RO) experimental
setup, which uses a FilmTec SW30 membrane. Sixty-three experimental data were generated for training and testing the network. The considered
ranges of operating conditions were chosen so as to include those encountered in a large number of the worldwide brackish water and seawater
RO plants. The NN was fed with three inputs: the feed pressure, temperature and salt concentration to predict the water permeate rate. The fast
Levenberg–Marquardt (LM) optimization technique was employed for training the NN. The network learned the input–output mappings with
accuracy for interpolation cases, but not for extrapolation.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Desalination of sea and brackish waters is the main source
for supplying fresh water in many Middle Eastern countries,
which suffer from the scarcity of rainwater and absence of lakes
and rivers. About half of the worldwide desalination capacity
is installed in the Gulf Co-operation Council (GCC) countries
alone[1].

The major technologies used for water desalination are
reverse osmosis (RO) and multistage flash distillation (MSF).
Recently, the former has gained more dominance particularly
for brackish water desalination. The rapid growth of RO is
attributed to a number of techno-economic factors, including
low energy requirements, low operating temperature, modular
design and low water production costs[2]. In a study conducted
in 2001, Wade[3] has shown the water production costs for an
RO process with an energy recovery system to be much lower
than that corresponding to MSF and multi-effect desalination
(MED). Using plants with capacity of 31,822 m3/d and a fuel
cost of US$ 1.5/GJ as a basis of comparison, Wade estimated
the water production costs for MSF, MED and RO with brine
booster to be (in US$/m3), 1.04, 0.95 and 0.75, respectively. With
today’s high costs of energy, the difference in water production

costs between the energy intensive thermal systems and
expected to be much more pronounced in favor of RO. Am
the other attractive features of RO is its modular nature.
feature has made it possible to design desalination proc
of various sizes using RO ranging from small scale to l
scale. Also, it makes the maintenance of RO systems fle
A large-scale RO plant consists of a large number of mod
(membrane elements). Specific membrane modules that
riorate or malfunction due to aging, or excessive fouling
be easily replaced. A wide range of RO membrane types
been developed by the membrane manufacturers to suit va
purposes, such as high flux membranes (suitable for bra
water), high rejection membranes (suitable for seawater
fouling resistant membranes (suitable for feed waters lea
to excessive fouling). Still another advantage of the RO pro
is that it is operated by pressurizing the feed water using h
pressure pumps to pressures well above the osmotic pre
which is proportional to the concentration of the solutes in
feed water. This makes the design less complicated, as th
no requirement for boilers or for coupling with a power pl
to make use of its waste heat, which is required by the the
desalination processes.

In terms of modeling, one of the disadvantages of RO is
difficulty of obtaining a rigorous mechanistic model of the p
ob.bh
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cess, which accounts for several important operating factors such
as the feed temperature, concentration polarization and fouling
[ uling
m able

1
d

∗ Corresponding author. Tel.: +973 17876880; fax: +973 17680935.
E-mail addresses: arabbus@eng.uob.bh (A. Abbas), naderbsk@eng.u

N. Al-Bastaki).

385-8947/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2005.07.016
4]. One reason is the fact that the mass transfer and fo
echanisms are not well understood. The availability of reli



140 A. Abbas, N. Al-Bastaki / Chemical Engineering Journal 114 (2005) 139–143

RO models is of paramount importance for process analysis and
design as well as forecasting long-term performance. For exam-
ple, the decision-makers can use such models to predict when
to change membrane elements.

During the last 15 years, neural networks (NNs) have been
the focus of much attention, largely because of their wide range
of applicability and ease with which they handle complex and
highly nonlinear problems. NNs were successfully applied to
problems from various areas including the business, medical
and industrial fields[5]. Process modeling is an area where NNs
of varying configurations and structures have been considered
as alternative modeling techniques, particularly in cases where
reliable mechanistic models cannot be obtained[6–11].

Recently, a few studies have considered the application of
NNs to the modeling and control of desalination plants[12–17].
MSF desalination was the main focus of these studies. Al-Shayji
and Liu[12,13]employed feedforward neural networks trained
by the back-propagation algorithm to model the performances of
two industrial plants: an MSF and an RO plants located in Kuwait
and Saudi Arabia, respectively. The limited information given
for the RO case showed the considered NN to outperform the
model based on regression analysis. Jafar and Zilouchian[14]
used a radial basis function network (RBFN) to model the perfor-
mances of two RO plants with different feed water intakes. The
performance of this network was compared to that of a feedfor-
ward network trained by the back-propagation algorithm. They
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ment between the NN predictions and the experimental results
was found to be very good for both single salts and mixtures.

As stated earlier, the amount of published work that is avail-
able in the literature on the application of NNs to desalination
processes in general and RO desalination in particular remains
to be limited. The usefulness of this modeling technique and the
confidence to which it can be implemented to RO desalination
plants still requires further verification using different types of
membranes and experimental conditions. The main objective of
this paper is to develop a NN for predicting the performance
of an RO unit, which is based on a FilmTec SW30 membrane.
Three key operating parameters, namely the feed temperature,
pressure and salt concentration are fed to the network to predict
the water production rate. The considered ranges of operating
conditions were chosen so as to include those encountered in a
large number of the worldwide brackish water and seawater RO
plants. One additional important aspect of this work is to test the
ability of NNs to interpolate and extrapolate actual RO data.

2. Neural network modeling

Neural networks are mathematical models designed to mimic
certain aspects of neurological functioning of the brain. A NN is
a parallel structure consisting of nonlinear processing elements
(neurons or nodes) interconnected by fixed or variable weights.
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ork, but requires additional computational burden. Howev

s not clear what operating conditions were used as the inp
he considered models nor the amount of data used for tra
nd testing the NNs.

Several investigations have considered the use of NN
odeling other membrane separation processes[18,19]. Cabas

ud et al.[18] used NN for the modeling of ultrafiltratio
rocesses for drinking water applications. The model cons
f two interconnected recurrent neural networks coupled
arcy’s law. They compared the results of the model
ata obtained from an experimental pilot plant and found
odel predictions to be satisfactory for different water q

ty and changing operating conditions. Razavi et al.[19,20]
sed two NN models with a single hidden layer each to
ict the dynamic performance of a milk ultrafiltration proce
hey studied the effects of changing the operating temper
nd transmembrane pressure and obtained very good agre
etween the experimental and model results. Shetty and Ch

21] used NN, with one hidden layer of eight neurons, to pre
he fouling of membranes for nanofiltration of ground and
ace waters. The inputs to the NN model included the flow
ermeate flux and feed water quality parameters, such as p
nd total dissolved solids concentration. With only about
f experimental data employed for training, the networks
ere found to accurately predict the fouling of the nanofiltra
embrane. Bowen et al.[22] used a NN to predict the rejectio
f four single salts (NaCl, Na2SO4, MgCl2 and MgSO4) and
ixtures of these salts at a nanofiltration membrane. The
ized NN was tested with rejection data obtained from a
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he nodes are grouped into layers. A typical network consis
n input layer, at least one hidden layer and an output laye
ost widely employed networks have one hidden layer

7]. For a feedforward NN the information propagates in
irection only—the forward direction. An example of a thr

ayer feedforward NN is shown inFig. 1. In this case, each no
ithin a given layer is connected to all the nodes of the prev

ayer. The node sums up the weighted inputs and a bias
asses the result through a linear or nonlinear function. For

nformation on the topology of NNs, the interested reader
onsult the excellent book by Hertz et al.[23].

A NN is trained by presenting it with a set of known inp
nd outputs. It learns the patterns of these inputs and ou
y manipulating the weights of the nodes’ connections.

ig. 1. Structure of a feedforward network with two input nodes, one hi
ayer with two nodes and two output nodes.
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weights are adjusted until the optimization criterion is mini-
mized. The most widely used criterion is the root-mean-square
error (RMSE):

RMSE=
{

1

N

N∑
i=1

(Pi,actual− Pi,predicted)
2

}1/2

(1)

whereN is the total number of output values used for training
andP refers to the output values.

Currently, the most widely employed algorithm for training
NNs is the back propagation approach[6,23]. It uses the steepest
descent traditional optimization technique to adjust the network
weights to minimize the RMSE between the actual values and
the values predicted by the network for a set of training data,
sequentially on an input–output pair basis. However, the back-
propagation techniques are known to converge slowly. In this
paper, the fast Levenberg–Marquardt (LM) optimization tech-
nique[24] is used for training the network.

3. Experimental

3.1. Data generation

The experimental data employed for modeling was obtained
from an RO rig based on a spiral wound FilmTec SW30 mem-
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Table 1
Permeate rate as a function of feed pressure, concentration and temperature

Feed pressure
(bar)

Feed concentration (g/l) Permeate rate (l/h)

10◦C 20◦C 30◦C

20 0.0 12.9 23.0 26.9
20 0.5 13.2 22.9 26.5
20 2.0 12.5 22.4 26.0
20 5.0 10.7 20.2 23.1
20 10.0 8.8 15.5 17.1
20 20.0 4.9 7.9 10.5
20 30.0 1.7 4.5 9.2
40 0.0 22.4 41.8 51.0
40 0.5 22.3 41.4 49.5
40 2.0 22.0 39.6 46.0
40 5.0 20.5 35.5 44.1
40 10.0 17.3 32.3 36.3
40 20.0 13.0 23.2 25.5
40 30.0 9.9 15.2 20.9
60 0.0 34.0 59.0 72.0
60 0.5 33.2 57.9 70.6
60 2.0 32.7 55.2 65.5
60 5.0 31.0 51.4 63.2
60 10.0 28.2 49.0 55.6
60 20.0 22.6 37.5 43.2
60 30.0 19.5 28.8 30.6

value by gradually increasing the feed pressure over time so
as to overcome the reduction of the permeation flux caused by
membrane fouling and compaction.

The duration of each experimental run was 30 min. The pro-
cess was allowed to reach steady state during the first 10 min
followed by collection of the permeate for the next 20 min. The
permeate production rate was then obtained manually through
division of the amount of the product collected by the run
duration (20 min). The readings obtained from the rotameters
were in close agreement with these more accurate manually cal-
culated values. The results of the experiments performed are
given in Table 1. Each of these 63 experimental values was
obtained by averaging the results of two repeated runs. In addi-
tion, all repeated runs lead to permeate fluxes, which were in
close agreement. As expected,Table 1shows that the perme-
ate rate increases with increasing pressure and temperature and
decreases with increasing feed concentration.

3.2. Network structure

As mentioned earlier, the NN used in this study has a feedfor-
ward structure trained using the LM optimization method. The
inputs to the network were the operating pressure, temperature
and feed concentration, and the output was the permeate rate.
T each
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rane,Fig. 2. A feed salt/water solution is fed to the membr
y a high-pressure pump. Two streams leave the membran
permeate stream and a concentrate solution. Each of the
treams passes through a rotameter to measure its flow r
ull description of the rig is given in the paper by Al-Bast
nd Abbas[25]. In this study, the permeate rate is used as
erformance measure of the membrane.

The feed solution used was prepared by mixing sodium c
ide, which is, by far, the major solute present in seawater,
ap water. To investigate the performance of the membrane
wide range of operating conditions, three key feed param
ere varied from run to run, namely the feed pressure,
erature and sodium chloride concentration. In all experim

he feed flow rate and permeate side pressure were main
onstant at 0.5 m3/h and atmospheric pressure, respectively.
ater recovery was allowed to vary. Note that in industrial
lants the recovery is generally maintained close to a de

Fig. 2. Experimental setup.
he optimum number of hidden layers and nodes within
ayer are problem specific, and there is no procedure ava
o know this a priori. For this reason, a trial and error appro
multiple runs) was followed to arrive at the best network ar
ecture. These included one and two hidden layers, and 3,
nd 15 nodes per each hidden layer. The activation function
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in the hidden nodes is the sigmoidal function:

f (x) = 1

1 + e−x
(2)

wherex is the sum of the weighted inputs to the neuron andf(x)
represents the output of the node. As for the output layer nodes,
a simple linear activation function was employed,f(x) = x.

The simplest network that yielded good results (small RMSE
values) without over-fitting the data had one 5-node hidden layer.
Several values of the learning rate and number of epochs (iter-
ations) have also been tested while training the network. Two
hundred epochs and a learning rate of 0.05 were found to be ade-
quate. An additional stopping criterion employed was a change
of <10−6 in the RMSE value from epoch to epoch. These param-
eters’ values were used in all computations in this work.

4. Results

Initially, the network was trained using all 63 data points. This
is referred to as Case 1. A plot of the RMSE and the number
of iterations is shown inFig. 3. This figure shows a sharp drop
in the RMSE in the first few iterations (fast training). This is a
well-known characteristic of the LM optimization method. The
training stopped after 150 iterations with an RMSE value of
1.04.

The trained network was then simulated by feeding it with all
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Fig. 4. Simulated (Ps) vs. actual (Pa) permeate rates (Case 1).

for training the network. The rest of the data (21 points corre-
sponding to an operating temperature of 20◦C) were employed
for testing or validating the trained network. The results of this
second case are presented inFig. 5 where the permeate rates
predicted by the trained network, at an operating temperature of
20◦C are plotted versus their corresponding experimental val-
ues. The best line fit indicates the good quality of the network
predictions. A slope of 1.08 and an intercept of−2.54 repre-
sent a reasonably good agreement between the predicted and
experimental values of the permeate rate. The coefficient of cor-
relationR2 has a value of 0.989. This example, has demonstrated
the well-known fact that NNs exhibit very good interpolation
capabilities.

To check the reliability of the NN for extrapolation, a third
case was considered. In this case, the experimental data were
again divided into two sets. The set first set (training set) was
composed of the data corresponding to the 10 and 20◦C oper-
ating temperatures. The second set, which contained the data
corresponding to an operating temperature of 30◦C was used for
testing the network. The network was trained and then simulated
using the test data set. A linear regression between the actual and
predicted permeate rates was then performed. A line, having a
f the data used for training.Fig. 4presents a plot of the netwo
utputs (predicted permeate rates) versus the targets (actu
eate rates). All points are close to the 45◦ line, which mean

hat the network has learnt the input–output mappings w
ood degree of accuracy. To quantify the agreement bet

he actual and predicted permeate flow rates, linear regre
as used to fit a line to the predicted target data set. As sho
ig. 4, the obtained best line has a slope of 0.996 and an inte
f 0.117. It is very close to the perfect prediction, or 45◦ line,
hich has a slope of 1 and an intercept of 0. The value o
orrelation coefficientR2 = 0.998.

In a second case, the experimental data was split into two
set of 42 points, composed of the data corresponding t

perating temperatures of 10 and 30◦C (seeTable 1), were use

Fig. 3. RMSE as a function of the number of iterations (epochs).
 Fig. 5. Predicted vs. actual permeate rates at 20◦C (Case 2).
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slope of 0.381 and an intercept of 84.8, was obtained. These two
values indicate that the network did not yield reasonable pre-
dictions of the experimental permeate rates. This performance
of the network is attributed to the limited number of training
data used and the fact that, generally, NNs do not yield reliable
results when used to extrapolate actual data[23,24].

5. Conclusion

A feedforward neural network was built to model the perfor-
mance of an RO experimental setup, which was subjected to a
series of different operating conditions. The network inputs were
the operating pressure, operating temperature and feed concen-
tration, and the output was the permeate rate. The use of the
Levenberg–Marquardt optimization technique led to fast train-
ing of the network. Simulations of the trained network yielded
permeate rates, which are very close to the actual values. The
NN was also found to interpolate the data with good accuracy.
As expected, however, the network did not produce acceptable
results when used for data extrapolation.

References

[1] K. Wangnick, IDA Worldwide Desalting Plants Inventory Report No.
17, Wangnick Consulting GmbH, Gnarrenburg, Germany, 2002.

[2] W.F.J.M. Nooijen, J.W. Wouters, Optimization and planning of seawater

ation

igh-

se

sed
omp.

urlier
and
on,

is,
atica

[9] G.M. Pigram, T.R. Macdonald, Use of neural network models to predict
industrial bioreactor effluent quality, Environ. Sci. Technol. 35 (1) (2001)
157–162.

[10] A.R. Mirzai, J.R. Leigh, An overview of the applications of neural
networks in process engineering, Comput. Control Eng. J. 3 (5) (1992)
105–112.

[11] T.W. Karjala, D.M. Himmelblau, Dynamic data rectification by recur-
rent neural networks vs. traditional methods, AIChE J. 40 (11) (1994)
1865–1875.

[12] K. Al-Shayji, Y.A. Liu, Neural networks for predictive modeling and
optimization of large-scale commercial water desalination plants, Proc.
IDA World Congr. Desalination Water Sci. 1 (1997) 1–15.

[13] K. Al-Shayji, Y.A. Liu, Predictive modeling of large-scale commercial
water desalination plants: data-based neural network and model-based
process simulation, Ind. Eng. Chem. Res. 41 (25) (2002) 6460–6474.

[14] M.M. Jafar, A. Zilouchian, Adaptive receptive fields for radial basis
functions, Desalination 135 (2001) 83–91.

[15] A.F. Abdulbary, L.L. Lai, K.V. Reddy, S.M. Al-Gobaisi, Artificial neu-
ral networks as efficient tools of simulation, Proc. IDA World Congr.
Desalination Water Sci. 4 (1995) 361–374.

[16] S. Parenti, S. Bogi, A. Massarani, Industrial application of real time
neural networks in multistage desalination plant, Proc. IDA World Congr.
Desalination Water Sci. 1 (1995) 457–467.

[17] S. Ramasamy, P.B. Deshpande, S.S. Tambe, B.D. Kulkarni, Identification
and advanced controls of MSF desalination plants with neural networks,
Proc. IDA World Congr. Desalination Water Sci. 1 (1995) 36–51.

[18] M. Cabassud, N. Delgrange-Vincent, C. Cabassud, L. Durand-Bourlier,
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