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Abstract

In this paper, a feedforward neural network (NN) model is developed to predict the performance of a reverse osmosis (RO) experimer
setup, which uses a FilmTec SW30 membrane. Sixty-three experimental data were generated for training and testing the network. The consic
ranges of operating conditions were chosen so as to include those encountered in a large number of the worldwide brackish water and sea
RO plants. The NN was fed with three inputs: the feed pressure, temperature and salt concentration to predict the water permeate rate. The
Levenberg—Marquardt (LM) optimization technique was employed for training the NN. The network learned the input—output mappings wit
accuracy for interpolation cases, but not for extrapolation.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction costs between the energy intensive thermal systems and RO is
expected to be much more pronounced in favor of RO. Among
Desalination of sea and brackish waters is the main sourcine other attractive features of RO is its modular nature. This
for supplying fresh water in many Middle Eastern countries feature has made it possible to design desalination processes
which suffer from the scarcity of rainwater and absence of lakesf various sizes using RO ranging from small scale to large
and rivers. About half of the worldwide desalination capacityscale. Also, it makes the maintenance of RO systems flexible.
is installed in the Gulf Co-operation Council (GCC) countriesA large-scale RO plant consists of a large number of modules
alone[1]. (membrane elements). Specific membrane modules that dete-
The major technologies used for water desalination areiorate or malfunction due to aging, or excessive fouling can
reverse osmosis (RO) and multistage flash distillation (MSF)be easily replaced. A wide range of RO membrane types have
Recently, the former has gained more dominance particularlpeen developed by the membrane manufacturers to suit various
for brackish water desalination. The rapid growth of RO ispurposes, such as high flux membranes (suitable for brackish
attributed to a number of techno-economic factors, includingvater), high rejection membranes (suitable for seawater) and
low energy requirements, low operating temperature, modulafiouling resistant membranes (suitable for feed waters leading
design and low water production cof2$. In a study conducted to excessive fouling). Still another advantage of the RO process
in 2001, Wadd3] has shown the water production costs for anis that it is operated by pressurizing the feed water using high-
RO process with an energy recovery system to be much lowesressure pumps to pressures well above the osmotic pressure,
than that corresponding to MSF and multi-effect desalinatiorwhich is proportional to the concentration of the solutes in the
(MED). Using plants with capacity of 31,822%d and a fuel feed water. This makes the design less complicated, as there is
cost of US$ 1.5/GJ as a basis of comparison, Wade estimatetb requirement for boilers or for coupling with a power plant
the water production costs for MSF, MED and RO with brineto make use of its waste heat, which is required by the thermal
booster to be (in US$/A), 1.04,0.95 and 0.75, respectively. With desalination processes.
today’s high costs of energy, the difference in water production In terms of modeling, one of the disadvantages of RO is the
difficulty of obtaining a rigorous mechanistic model of the pro-
cess, which accounts for several important operating factors such
mpondmg author. Tel.: +973 17876880 fax: +973 17680935, as the feed temp_erature, concentration polarization and foul_ing
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RO models is of paramount importance for process analysis anmdent between the NN predictions and the experimental results
design as well as forecasting long-term performance. For examwas found to be very good for both single salts and mixtures.
ple, the decision-makers can use such models to predict when As stated earlier, the amount of published work that is avail-
to change membrane elements. able in the literature on the application of NNs to desalination
During the last 15 years, neural networks (NNs) have beeprocesses in general and RO desalination in particular remains
the focus of much attention, largely because of their wide rangto be limited. The usefulness of this modeling technique and the
of applicability and ease with which they handle complex andconfidence to which it can be implemented to RO desalination
highly nonlinear problems. NNs were successfully applied tgplants still requires further verification using different types of
problems from various areas including the business, medicahembranes and experimental conditions. The main objective of
and industrial field§5]. Process modeling is an area where NNsthis paper is to develop a NN for predicting the performance
of varying configurations and structures have been considereaf an RO unit, which is based on a FilmTec SW30 membrane.
as alternative modeling techniques, particularly in cases wher€hree key operating parameters, namely the feed temperature,
reliable mechanistic models cannot be obtaifted 1]. pressure and salt concentration are fed to the network to predict
Recently, a few studies have considered the application ahe water production rate. The considered ranges of operating
NNs to the modeling and control of desalination pldaf-17] conditions were chosen so as to include those encountered in a
MSF desalination was the main focus of these studies. Al-Shayjarge number of the worldwide brackish water and seawater RO
and Liu[12,13]employed feedforward neural networks trained plants. One additional important aspect of this work is to test the
by the back-propagation algorithm to model the performances adbility of NNs to interpolate and extrapolate actual RO data.
two industrial plants: an MSF and an RO plants located in Kuwait
and Saudi Arabia, respectively. The limited information given2, Neural network modeling
for the RO case showed the considered NN to outperform the

model based on regression analysis. Jafar and Zilough##n Neural networks are mathematical models designed to mimic
used aradial basis function network (RBFN) to model the perforzertain aspects of neurological functioning of the brain. A NN is
mances of two RO plants with different feed water intakes. They parallel structure consisting of nonlinear processing elements
performance of this network was compared to that of a feedfor¢neurons or nodes) interconnected by fixed or variable weights.
ward network trained by the back-propagation algorithm. Theyrhe nodes are grouped into layers. A typical network consists of
found the RBFN to learn much faster than the feedforward netyp, input layer, at least one hidden layer and an output layer. The
work, but requires additional computational burden. However, ithost widely employed networks have one hidden layer only
is not clear what operating conditions were used as the inputs 19]. For a feedforward NN the information propagates in one
the considered models nor the amount of data used for trainingjrection only—the forward direction. An example of a three-
and testing the NNs. layer feedforward NN is shown ifig. 1 In this case, each node
Several investigations have considered the use of NNs fathin a given layer is connected to all the nodes of the previous
modeling other membrane separation procefls49] Cabas-  |ayer. The node sums up the weighted inputs and a bias, and
sud et al.[18] used NN for the modeling of ultrafiltration passes the result through a linear or nonlinear function. For more
processes for drinking water applications. The model consisteghformation on the topology of NNs, the interested reader may
of two interconnected recurrent neural networks coupled withyonsult the excellent book by Hertz et {3].
Darcy’s law. They compared the results of the model with A NN is trained by presenting it with a set of known inputs
data obtained from an experimental pilot plant and found theyng outputs. It learns the patterns of these inputs and outputs

model predictions to be satisfactory for different water qual-py manipulating the weights of the nodes’ connections. The
ity and changing operating conditions. Razavi et[&B,20]

used two NN models with a single hidden layer each to pre-
dict the dynamic performance of a milk ultrafiltration process.
They studied the effects of changing the operating temperature
and transmembrane pressure and obtained very good agreement
between the experimental and model results. Shetty and Chellam
[21] used NN, with one hidden layer of eight neurons, to predict
the fouling of membranes for nanofiltration of ground and sur-
face waters. The inputs to the NN model included the flow rate,

permeate flux and feed water quality parameters, such as pH, UV \_/

and total dissolved solids concentration. With only about 10%

of experimental data employed for training, the networks used Input layer Hidden layer Output layer
were found to accurately predict the fouling of the nanofiltration

membrane. Bowen et §22] used a NN to predict the rejections g‘ é‘;{f’s“fu']‘ﬁde

of four single salts (NaCl, N&O4, MgCl, and MgSQ) and O Computation node
mixtures of these salts at a nanofiltration membrane. The opti-
mized NN was tested with rejection data obtained from a pilotig. 1. Structure of a feedforward network with two input nodes, one hidden
plant based on a spiral-wound membrane. The overall agreéyer with two nodes and two output nodes.
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weights are adjusted until the optimization criterion is mini- Table 1
mized. The most Widely used criterion is the rOot_mean_squargermeate rate as a function of feed pressure, concentration and temperature

error (RMSE): Feed pressure  Feed concentration (g/l) Permeate rate (I/h)
L 1/2 (bar) 10°C  20°C  30°C
RMSE = {Z(P,-,actum— P,»ypredictef)z} (1) 20 0.0 129 230 269
N 20 0.5 132 229 265
20 2.0 125 224  26.0
whereN is the total number of output values used for training2o 5.0 107 202 231
andP refers to the output values. 20 10.0 88 155 171
Currently, the most widely employed algorithm for training 20 20.0 4.9 79 105
NNs is the back propagation approd6i23]. It uses the steepest 4218 38:8 2;:1 41'_2 53‘_%
descent traditional optimization technigque to adjust the networlgg 05 223 414 495
weights to minimize the RMSE between the actual values ando 2.0 220 396  46.0
the values predicted by the network for a set of training data40 5.0 205 355 441
sequentially on an input—output pair basis. However, the backi 10.0 173 323 363
propagation techniques are known to converge slowly. In thiélg gg:g 1;’_'8 fg; Sg:g
paper, the fast Levenberg—Marquardt (LM) optimization techq 0.0 340 590  72.0
nique[24] is used for training the network. 60 0.5 332 579 706
60 2.0 327 552 655
3. Experimental 60 5.0 31.0 514 632
60 10.0 282 490 556
60 20.0 226 375 432
3.1. Data generation 60 30.0 195 28.8 30.6

The experimental data employed for modeling was obtained
from an RO rig based on a spiral wound FilmTec SW30 mem-

braneFig. 2. A feed salt/water solution is fed to the membranevalue by gradually increasing the feed pressure over time so

by a high-pressure pump. Two streams leave the membrane Unfs v, oercome the reduction of the permeation flux caused by
a permeate stream and a concentrate solution. Each of these tW. \brane fouling and compaction

streams passes through a rotameter to measure its flow rate. A The duration of each experimental run was 30 min. The pro-

full description of the rig is given in the paper by Al-Bastaki .oqq \yas allowed to reach steady state during the first 10 min
and Abbag25]. In this study, the permeate rate is used as thgy|oyed by collection of the permeate for the next 20 min. The

performance measure of the membrane. _ permeate production rate was then obtained manually through
_ The feed solution used was prepared by mixing sodium chlog;ision of the amount of the product collected by the run

ride, which IS, by far, the rrr:ajor sfolute presefnthln seawater, W'trburation (20 min). The readings obtained from the rotameters
tap water. To investigate the performance of the membrane ovgle e in close agreement with these more accurate manually cal-

awide range of operating conditions, three key feed parametef, ated values. The results of the experiments performed are

were varied from run to run, namely the feed pressure, Mg en in Table 1 Each of these 63 experimental values was

perature and sodium chloride concentration. In all experimentsaineq by averaging the results of two repeated runs. In addi-
the feed flow rate and permeate side pressure were mamtamﬁgm all repeated runs lead to permeate fluxes, which were in

constant at 0.5 Ath and atmospheric pressure, respectively. Theclose agreement. As expectdble 1shows that the perme-

water recovery was allowed to vary. Note that in industrial RO,¢q (416 increases with increasing pressure and temperature and

plants the recovery is generally maintained close to a des"e&'ecreases with increasing feed concentration

G? Membrane
»

Rotameter

3.2. Network structure

As mentioned earlier, the NN used in this study has a feedfor-
ward structure trained using the LM optimization method. The
inputs to the network were the operating pressure, temperature

and feed concentration, and the output was the permeate rate.
Feed The optimum number of hidden layers and nodes within each
tank (;0:; layer are problem specific, and there is no procedure available
) Perm. y to know this a prioriFor this reason, a trial and error approach
Filter V2 tank . . .
—U—w—g (multiple runs) was followed to arrive at the best network archi-

tecture. These included one and two hidden layers, and 3, 5, 10
Fig. 2. Experimental setup. and 15 nodes per each hidden layer. The activation function used
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in the hidden nodes is the sigmoidal function: 80
1
x) = 2
0= 1= @

80

wherex is the sum of the weighted inputs to the neuron giad

represents the output of the node. As for the output layer nodes, -

a simple linear activation function was employ#éd) = x. =, 40
The simplest network that yielded good results (small RMSE .

values) without over-fitting the data had one 5-node hidden layer.

Several values of the learning rate and number of epochs (iter- 20+

e Data Points
— — 45°Line
—— Best Line

ations) have also been tested while training the network. Two
hundred epochs and a learning rate of 0.05 were found to be ade-
quate. An additional stopping criterion employed was a change 0 - : w
of <10-%in the RMSE value from epoch to epoch. These param-
eters’ values were used in all computations in this work.

P.,I’h

a?

Fig. 4. Simulated®s) vs. actual P,) permeate rates (Case 1).
4. Results

for training the network. The rest of the data (21 points corre-
ponding to an operating temperature of @) were employed
or testing or validating the trained network. The results of this
second case are presentedrig. 5 where the permeate rates
predicted by the trained network, at an operating temperature of
f20°C are plotted versus their corresponding experimental val-
ues. The best line fit indicates the good quality of the network
predictions. A slope of 1.08 and an intercept-e2.54 repre-

The trained network was then simulated by feeding it with all ¢ bl q t bet th dicted and
of the data used for trainingig. 4presents a plot of the network sent a reasonably good agreement between the predicted an
gxperimental values of the permeate rate. The coefficient of cor-

outputs (predicted permeate rates) versus the targets (actual p fPe 5 i
meate rates). All points are close to the 4ie, which means relationR< has a value of 0.989. This example, has demonstrated

that the network has learnt the input—output mappings with éhe well-known fact that NNs exhibit very good interpolation

good degree of accuracy. To quantify the agreement betweecf?pab'“t'es'

the actual and predicted permeate flow rates, linear regression To check thgcjrellag)ll:ty t%f' the NN Iﬁ r extrap.olatlc;nl, g tth ird
was used to fit a line to the predicted target data set. As shown [fps€ was considered. In this case, the experimental data were
ain divided into two sets. The set first set (training set) was

Fig. 4, the obtained best line has a slope 0f 0.996 and an interce :

of 0.117. It is very close to the perfect prediction, of 4ibe, qmposed of the data corresponding to the 10ar :.IE2§|:er-
which has a slope of 1 and an intercept of 0. The value of th&ling temperatures. The second set, which contained the data
correlation coefficienk? = 0 998 corresponding to an operating temperature ¢fGWas used for
o festing the network. The network was trained and then simulated

a set of 42 points, composed of the data corresponding to thLé'smg the test data set. A linear regression between the actual and

operating temperatures of 10 and"&(se€Table 3, were used predicted permeate rates was then performed. A line, having a

Initially, the network was trained using all 63 data points. This
is referred to as Case 1. A plot of the RMSE and the numbe
of iterations is shown iffrig. 3. This figure shows a sharp drop
in the RMSE in the first few iterations (fast training). This is a
well-known characteristic of the LM optimization method. The

1200 70
Best Line: P,=1.08"P,-2.58, R2=0.989 00 -
56- -
900
42+
3 S
% 600 a®
28
@ Data Points
— - 45°Line
300+ 14 —— BestLine
o
0 0 : . ; .
0 10 20 30 0 14 28 42 56 70
Iteration P, h

Fig. 3. RMSE as a function of the number of iterations (epochs).

Fig. 5. Predicted vs. actual permeate rates a2(Case 2).
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slope of 0.381 and an intercept of 84.8, was obtained. These tw®] G.M. Pigram, T.R. Macdonald, Use of neural network models to predict
values indicate that the network did not yield reasonable pre- industrial bioreactor effluent quality, Environ. Sci. Technol. 35 (1) (2001)
dictions of the experimental permeate rates. This performance 157-162. _ , o

f the network is attributed to the limited number of trainin [HO] A.R. Mirzai, J.R. Leigh, An overview of the applications of neural
0 - . g networks in process engineering, Comput. Control Eng. J. 3 (5) (1992)
data used and the fact that, generally, NNs do not yield reliable  1g5-112.

results when used to extrapolate actual {2824] [11] T.W. Karjala, D.M. Himmelblau, Dynamic data rectification by recur-
rent neural networks vs. traditional methods, AIChE J. 40 (11) (1994)
1865-1875.

[12] K. Al-Shayiji, Y.A. Liu, Neural networks for predictive modeling and

. optimization of large-scale commercial water desalination plants, Proc.
A feedforward neural network was built to model the perfor- IDA World Congr. Desalination Water Sci. 1 (1997) 1-15.

mance of an RO experimental setup, which was subjected to[&3] K. Al-Shayji, Y.A. Liu, Predictive modeling of large-scale commercial
series of different operating conditions. The network inputs were ~ water desalination plants: data-based neural network and model-based
the operating pressure, operating temperature and feed concen- Process simulation, ind. Eng. Chem. Res. 41 (25) (2002) 6460-6474.

. 14] M.M. Jafar, A. Zilouchian, Adaptive receptive fields for radial basis
tration, and the output was 'Fhe _permeate_ rate. The use of_t € functions, Desalination 135 (2001) 83-91.
Levenberg—Marquardt optimization technique led to fast trainys) A F. Abdulbary, L.L. Lai, K.V. Reddy, S.M. Al-Gobaisi, Artificial neu-
ing of the network. Simulations of the trained network yielded  ral networks as efficient tools of simulation, Proc. IDA World Congr.
permeate rates, which are very close to the actual values. The Desalination Water Sci. 4 (1995) 361-374.
NN was also found to interpolate the data with good accuraC);_ZLG] S. Parenti, S. Bogi, A. Massarani, Industrial application of real time

. neural networks in multistage desalination plant, Proc. IDA World Congr.
As expected, however, the network did not produce acceptable . i ation Water Sci. 1 (1995) 457-467.

5. Conclusion

results when used for data extrapolation. [17] S. Ramasamy, P.B. Deshpande, S.S. Tambe, B.D. Kulkarni, Identification
and advanced controls of MSF desalination plants with neural networks,
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